Knots, minimal surfaces and J-holomorphic curves

Joel Fine

03-May-2022, 14:00-15:00 (4 years ago)

Abstract: Let K be a knot or link in the 3-sphere, thought of as the ideal boundary of hyperbolic 4-space, H^4. The main theme of my talk is that it should be possible to count minimal surfaces in H^4 which fill K and obtain a link invariant. In other words, the count doesn’t change under isotopies of K. When one counts minimal disks, this is a theorem. Unfortunately there is currently a gap in the proof for more complicated surfaces. I will explain “morally” why the result should be true and how I intend to fill the gap. In fact, this (currently conjectural) invariant is a kind of Gromov—Witten invariant, counting J-holomorphic curves in a certain symplectic 6-manifold diffeomorphic to S^2xH^4. The symplectic structure becomes singular at infinity, in directions transverse to the S^2 fibres. These singularities mean that both the Fredholm and compactness theories have fundamentally new features, which I will describe. Finally, there is a whole class of infinite-volume symplectic 6-manifolds which have singularities modelled on the above situation. I will explain how it should be possible to count J-holomorphic curves in these manifolds too, and obtain invariants for links in other 3-manifolds.

algebraic geometrydifferential geometrygeometric topologysymplectic geometry

Audience: researchers in the topic


Free Mathematics Seminar

Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.

The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.

Organizers: Jonny Evans*, Ailsa Keating, Yanki Lekili*
*contact for this listing

Export talk to